技術ノート

振動援用装置の開発とドライドリル切削工具の性能評価

西岡孝夫*1) 桶田靖広*1) 加藤光吉*2)

Development of device for vibration and drill performance evaluation in dry cutting

Takao NISHIOKA, Yasuhiro TOITA and Kokichi KATO

1. はじめに

最近,機械加工の金型分野では、日本国内に生産を残す べき分野の金型に重点を置いて開発が進められるようにな ってきた。課題の1つに,有害廃棄物排出規制法や作業環境 問題への対応としての潤滑剤の使用低減がある。そのため, 加工全体の中でも大きな割合を占めているドリル加工に関 して、高精度穴や微細穴などの高速切削や MQL (Minimal Quantity Lubrication)への適応が期待されている。特に、 微細加工の分野では,工具に超音波振動を付加する複合切削 加工が注目されている。本研究では、まずステンレス材に対 する通常の極小径ドリル穴加工条件を選定するため,生産現 場で行われている切削抵抗の測定を行った。しかし、ドリル 折損が多く発生し,必要な測定データが得られなかった。そ のため, 折損の程度そのものをデータとして, 望小特性の解 析を行った1)。すなわち、L₁₈直交表を用いたデータの算出 である。また、このように選定した加工条件において、超音 波振動の付加,および切削油剤の供給を行わない乾式ドリル 穴加工などを行い, 工具寿命, 寸法精度, および加工面状態 などを改善するための設定条件を調べた。

2. 実験方法

極小径ドリル穴加工の最適条件を求めるため、 L_{18} 直交表に 8 因子を割り付けて、NC 精密立形加工機(東芝機械 UVM) を用いて実験を行った。直交表 L_{18} による 18 通りの組み合わせに対し、板厚 3 種類を変えて貫通穴のステップ加工である。表 1 に因子の割付けを示す。

評価方法は、折損の程度そのものを点数化し、望小特性で評価した。点数は全て0点(良い) \sim 10点(悪い)による付け方である。表2に望小特性の評価項目を示す。

次に,高周波振動を発生させる超音波振動装置(エコー技研)を加工機テーブル上に取り付けて,超音波振動切削実験を行った。その際の基本的な設定は,極小径ドリル穴加工の最適条件とした。

工具寿命や加工精度に関する測定は,工具折損までの穴個

数、および光学顕微鏡で一定の加工数ごとに、穴入口側の縦 方向と横方向の穴径差を測定し、次式に示す穴径差を求めて 加工精度の比較を行った。および加工断面のSEM像を観察 した。

穴径差= | X方向の直径-Y方向の直径 |

表3に超音波振動装置の仕様を示す。なお,切削油剤供給 は水溶性切削油剤を使用した。

表 1 因子の割付け

制御因子		水準			
	的种因 1	1	2	3	
A	センタート゛リル	なし	あり		
В	油量	DRY	MIST	WET	
С	工具メーカー	A社	B社	C社	
D	面粗さ Ra	小	中	大	
Е	ネジレ角゜	小	中	大	
F	ステップ μm	小	中	大	
G	回転数 rpm	小	中	大	
Н	ドリル径 mm	0.3	0.5	0. 7	

表 2 評価項目

- 1. 折損状態:加工中に折れた穴深さを考慮する。
- 2. 穴の表面状態を見て判断する。
- 3. ドリル径に対する穴径差の程度。

表 3 超音波振動装置の仕様

周波数 : 38kHz

振動子:ボルト締めランジュバン型振動子

振動板有効面積: φ 3 5 mm

外形寸法 : ϕ 7 0 mm * 1 3 0 mm 振動体の先端の振幅: 1 \sim 1 0 μ m

^{*1)} 加工技術グループ *2) 計測応用技術グループ

表 4 点数付けの結果

実験番号	折損	表面状態	穴径差
1	6.7	5.0	6.5
2	2.7	2.7	4.3
3	0.0	2.0	2.3
4	0.0	0.7	2.5
5	2.7	3.0	3.5
6	0.0	3.3	5.8
7	0.0	2.0	3.0
8	0.0	1.3	1.5
9	0.7	2.3	4.3
10	2.0	2.7	2.5
11	1.3	2.3	3.3
12	0.0	2.7	1.8
13	0.0	0.7	0.8
14	0.0	1.0	0.8
15	10.0	7.3	10.0
16	0.0	0.7	1.5
17	0.0	0.3	0.8
18	3.3	4.7	7.0

3. 結果

表 1 の因子を割り付けた直交表 L_{18} による 18 通りの組み合わせ実験において、工具折損は 22%発生した。各項目の点数付けの結果を表 4 に示す。望小特性の解析により求めた最適条件のパラメータは、センタードリル:あり、油量:WET、工具メーカー:B社、面粗さ:大、ネジレ角:大、ステップ:小、回転数:大、工具径:0.7 mm の組み合わせであった。

上述の結果に基づいて、直径 0.3mm 超硬材質のツイストドリルを作成し、振動付加の実験を行った。実験方法は、超音波振動装置の振動テーブル上に被加工材の SUS304 をネジ止めし、 ϕ 0.3 深さ 1.5mm止り穴のステップ加工を行なった。表 5 に実験条件を示し、結果を次に示す。

表 6 に工具寿命の測定結果を示す。通常のドリル穴加工では、ステップ量の増加によって加工穴数が減少する。しかし、超音波振動を付加した場合、加工穴数はステップ量を増加しても、ほとんど変わらなかった。

表7に穴径差の測定結果を示す。超音波振動付加では、工 具折損するまで穴径差の変化は少ない。およびステップ量の 違いに対し、穴径差の変化は見られなかった。

図1に通常ドリル穴加工および振動振幅を変えた加工断面の SEM 像を示す。

4. まとめ

本実験において,得られた結論は次のとおりである。超音 波振動付加によって,通常ドリル穴加工と比較して,ステッ

表 5 実験条件

ドリル : $\phi 0.3 \times 7 \, \text{mm}$ (刃長), 工具コーティング (なし, あり)

主軸回転: 7000rpm 送り速度: 35mm/min

ステップ: $0.06 \, \text{mm} \sim 0.36 \, \text{mm}$

油剤供給: (乾式, あり) 振動 : 1 μ m

表 6 加工穴数の測定結果(個)

No.	油剤供給	振動	ドリル	ステップ量 mm		
NO.				0.06	0.18	0.36
1	あり	なし	超硬	116	42	22
2	あり	あり	超硬	250	248	210
3	乾式	なし	超硬	3	0	
4	乾式	なし	T i N被膜超硬	1	0	
5	乾式	あり	超硬	4	8	
6	乾式	あり	T i N被膜超硬	1	7	

表7 穴径差の測定結果(μm)

実験条件	加工穴数				
大峽木門	1	50	100	150	200
振動なし-0.06step	17	36	28		
振動なし-0.18step	74				
振動なし-0.36step	10				
振動あり-0.06step	50	18	7	68	50
振動あり-0.18step	7	18	99	6	8
振動あり-0.36step	23	49	79	3	7

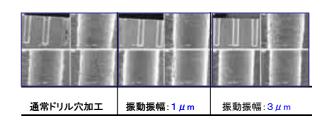


図1 加工断面の比較

プ量を大きく設定できる。その上、切削油剤供給の効果が十分に得られ、工具寿命は2倍に延長し、加工時間は1/4倍に短縮できた。また、加工面の状態についても改善を図ることができた。しかし、乾式における工具寿命は極端に短く、振動援用、および工具コーティングによる効果は、ほとんど得られなかった。

参考文献

1) 高松喜久雄,藤懸清,藤本良一,西岡孝夫,矢野宏:微 小径ドリルによる難削材孔あけ加工の最適化,第12回 品質工学研究発表大会論文集,156-159(2004).

(原稿受付 平成17年8月4日)